Emergency Medical Response
Table of Contents

UNIT 1: PREPARATORY

1. The Emergency Medical Responder 2
2. The Well-Being of the Emergency Medical Responder 14
3. Medical, Legal and Ethical Issues 41
4. The Human Body 58
5. Lifting and Moving Patients 81

UNIT 2: ASSESSMENT

6. Scene Size-Up 114
7. Primary Assessment 135
8. History Taking and Secondary Assessment 163
9. Communication and Documentation 199

UNIT 3: AIRWAY

10. Airway and Ventilation 213
11. Airway Management 251
12. Emergency Oxygen 277

UNIT 4: CIRCULATION

13. Circulation and Cardiac Emergencies 290

UNIT 5: MEDICAL EMERGENCIES

14. Medical Emergencies 324
15. Poisoning 348
16. Environmental Emergencies 372
17. Behavioral Emergencies 404

UNIT 6: TRAUMA EMERGENCIES

18. Shock 418
19. Bleeding and Trauma 425
20. Soft Tissue Injuries 444
21. Injuries to the Chest, Abdomen and Genitalia 461
22. Injuries to Muscles, Bones and Joints 475
23. Injuries to the Head, Neck and Spine 505

UNIT 7: SPECIAL POPULATIONS

24. Childbirth 530
25. Pediatrics 550
26. Geriatrics and Special Needs Patients 569

UNIT 8: EMS OPERATIONS

27. EMS Support and Operations 584
28. Access and Extrication 601
29. Hazardous Materials Emergencies 611
30. Incident Command and Multiple-Casualty Incidents 623
31. Response to Disasters and Terrorism 638
32. Special Operations 659

GLOSSARY

671

SOURCES

698

INDEX

702
Detailed Table of Contents

UNIT 1: PREPARATORY

1. **The Emergency Medical Responder 2**
 - You Are the Emergency Medical Responder 2
 - Key Terms 3
 - Learning Objectives 3
 - Introduction 4
 - The EMS System 4
 - Emergency Medical Responder 8
 - Putting It All Together 13

2. **The Well-Being of the Emergency Medical Responder 14**
 - You Are the Emergency Medical Responder 14
 - Key Terms 15
 - Learning Objectives 16
 - Introduction 17
 - Preventing Disease Transmission 17
 - Emotional Aspects of Emergency Care 30
 - Stress Management 32
 - Incident Stress Management 33
 - Putting It All Together 35
 - You Are the Emergency Medical Responder 36
 - **Skill Sheet:** Removing Disposable Gloves 37
 - Enrichment: Health of the Emergency Medical Responder 38

3. **Medical, Legal and Ethical Issues 41**
 - You Are the Emergency Medical Responder 41
 - Key Terms 42
 - Learning Objectives 43
 - Introduction 44
 - Legal Duties 44
 - Patient Consent and Refusal of Care 46
 - Other Legal Issues 52
 - Confidentiality and Privacy 53
 - Special Situations 55
 - Putting It All Together 56
 - You Are the Emergency Medical Responder 57

4. **The Human Body 58**
 - You Are the Emergency Medical Responder 58
 - Key Terms 59
 - Learning Objectives 59
 - Introduction 60
 - Medical Terminology 60
 - Anatomical Terms 60
 - Body Systems 64
 - Putting It All Together 79
 - You Are the Emergency Medical Responder 80

5. **Lifting and Moving Patients 81**
 - You Are the Emergency Medical Responder 81
 - Key Terms 82
 - Learning Objectives 83
 - Skill Objectives 83
<table>
<thead>
<tr>
<th>Detailed Table of Contents ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction 84</td>
</tr>
<tr>
<td>Role of the Emergency Medical Responder 84</td>
</tr>
<tr>
<td>Principles of Moving Patients 85</td>
</tr>
<tr>
<td>Emergency Moves 87</td>
</tr>
<tr>
<td>Non-Emergency Moves 90</td>
</tr>
<tr>
<td>Equipment 92</td>
</tr>
<tr>
<td>Patient Positioning and Packaging for Transport 94</td>
</tr>
<tr>
<td>Medical Restraint 97</td>
</tr>
<tr>
<td>Putting It All Together 98</td>
</tr>
<tr>
<td>You Are the Emergency Medical Responder 99</td>
</tr>
</tbody>
</table>

Skill Sheet: Clothes Drag 100

Skill Sheet: Blanket Drag 101

Skill Sheet: Shoulder Drag 102

Skill Sheet: Ankle Drag 103

Skill Sheet: Firefighter’s Drag 104

Skill Sheet: Firefighter’s Carry 105

Skill Sheet: Pack-Strap Carry 106

Skill Sheet: Walking Assit 107

Skill Sheet: Two-Person Seat Carry 108

Skill Sheet: Direct Ground Lift 109

Skill Sheet: Extremity Lift 111

| Safety 116 |
| Mechanism of Injury and Nature of Illness 120 |
| Additional Resources 127 |
| Putting It All Together 130 |
| You Are the Emergency Medical Responder 130 |
| Enrichment: Dealing with Hazards at the Scene 131 |

UNIT 2: ASSESSMENT

| 6 Scene Size-Up 114 |
| You Are the Emergency Medical Responder 114 |
| Key Terms 115 |
| Learning Objectives 115 |
| Introduction 116 |
| Dispatch Information 116 |

Skill Sheet: Jaw-Thrust (Without Head Extension) Maneuver 153

Skill Sheet: Using a Resuscitation Mask—Adult, Child and Infant 154

Skill Sheet: Using a Resuscitation Mask—Head, Neck or Spinal Injury Suspected (Jaw-Thrust [Without Head Extension] Maneuver—Adult or Child) 156
Skill Sheet: Primary Assessment 158
Enrichment: Glasgow Coma Scale 161

8 History Taking and Secondary Assessment 163
You Are the Emergency Medical Responder 163
Key Terms 164
Learning Objectives 165
Skill Objectives 165
Introduction 166
Obtaining the Focused/Medical History 166
Components of a Patient History 167
SAMPLE History 168
The Secondary Assessment 169
Detailed Physical Exam 172
Obtaining Baseline Vital Signs 175
Ongoing Assessment 182
The Need for More Advanced Medical Personnel 183
Putting It All Together 183
You Are the Emergency Medical Responder 185
Skill Sheet: How to Obtain a SAMPLE History 186
Skill Sheet: How to Perform a Secondary Assessment for a Responsive Medical Patient 187
Skill Sheet: How to Perform a Secondary Assessment for an Unresponsive Medical Patient 188
Skill Sheet: Physical Exam and Patient History 189
Skill Sheet: How to Obtain Baseline Vital Signs 191

Skill Sheet: Taking and Recording a Patient’s Blood Pressure (by Auscultation) 193
Skill Sheet: Taking and Recording a Patient’s Blood Pressure (by Palpation) 195
Enrichment: Pulse Oximetry 197

9 Communication and Documentation 199
You Are the Emergency Medical Responder 199
Key Terms 200
Learning Objectives 200
Introduction 201
Communicating Within the Emergency Communications System 201
Interpersonal Communication 204
The Importance of Documentation 206
Prehospital Care Report 206
Transfer of Care 209
Special Situations 210
Putting It All Together 210
You Are the Emergency Medical Responder 210

UNIT 3: AIRWAY

10 Airway and Ventilation 213
You Are the Emergency Medical Responder 213
Key Terms 214
Learning Objectives 215
Skill Objectives 215
Introduction 216
The Respiratory System 216
Respiratory Emergencies 217
Airway 221
Assessing Breathing 223
Artificial Ventilation 226
Putting It All Together 231
You Are the Emergency Medical Responder 232
Skill Sheet: Giving Ventilations—Adult and Child 233
Skill Sheet: Giving Ventilations—Infant 236
Skill Sheet: Giving Ventilations—Head, Neck or Spinal Injury Suspected: Jaw-Thrust (Without Head Extension) Maneuver—Adult and Child 238
Skill Sheet: Giving Ventilations Using a Bag-Valve-Mask Resuscitator—Two Rescuers 241
Enrichment: Assessing Breath Sounds 244
Enrichment: Sellick’s Maneuver (Cricoid Pressure) 245
Skill Sheet: Performing the Sellick’s Maneuver (Cricoid Pressure) 246
Enrichment: Assisting the Patient with Asthma 247
Skill Sheet: Assisting with an Asthma Inhaler 249

11 Airway Management 251
You Are the Emergency Medical Responder 251
Key Terms 252
Learning Objectives 252
Skill Objectives 252
Introduction 253
Suctioning 253
Breathing Devices 254
Airway Adjuncts 254
Airway Obstruction 256
Putting It All Together 260
You Are the Emergency Medical Responder 260
Skill Sheet: Using a Mechanical Suctioning Device 261
Skill Sheet: Using a Manual Suctioning Device 263
Skill Sheet: Inserting an Oral Airway 265
Skill Sheet: Conscious Choking—Adult and Child 267
Skill Sheet: Conscious Choking—Infant 269
Skill Sheet: Unconscious Choking—Adult and Child 271
Skill Sheet: Unconscious Choking—Infant 273
Enrichment: Nasopharyngeal Airway 275
Skill Sheet: Inserting a Nasal Airway 275

12 Emergency Oxygen 277
You Are the Emergency Medical Responder 277
Key Terms 278
Learning Objectives 278
Skill Objectives 278
Introduction 279
Administering Emergency Oxygen 279
Safety Precautions 285
Putting It All Together 285
You Are the Emergency Medical Responder 285
Skill Sheet: Oxygen Delivery 286

UNIT 4: CIRCULATION

13 Circulation and Cardiac Emergencies 290
You Are the Emergency Medical Responder 290
22 Injuries to Muscles, Bones and Joints 475
You Are the Emergency Medical Responder 475
Key Terms 476
Learning Objectives 477
Skill Objectives 477
Introduction 478
Musculoskeletal System 478
Injuries to Muscles, Bones and Joints 479
Splinting 484
Putting It All Together 491
You Are the Emergency Medical Responder 491
Skill Sheet: Applying a Rigid Splint 492
Skill Sheet: Applying a Sling and Binder 494
Skill Sheet: Applying an Anatomic Splint 496
Skill Sheet: Applying a Soft Splint 498
Enrichment: Agricultural and Industrial Emergencies 500

23 Injuries to the Head, Neck and Spine 505
You Are the Emergency Medical Responder 505
Key Terms 506
Learning Objectives 506
Skill Objectives 506
Introduction 507
Anatomy of the Head, the Neck and the Spine 507
Injuries to the Head 507
Injuries to the Neck and Spine 514
Introduction 640	32 Special Operations 659
Preparing for Disasters and Terrorist Incidents 640	You Are the Emergency Medical Responder 659
Incident Management 640	Key Terms 660
The Role of the Emergency Medical Responder 643	Learning Objectives 660
Disaster Response 643	Introduction 661
WMDs (Chemical, Biological, Radiological/Nuclear and Explosive Incidents) 646	Hazardous Terrain 665
Response to a CBRNE WMD Incident 651	Confined Space 665
Providing Self-Care and Peer Care for Nerve Agents 653	Crime Scene 667
Putting It All Together 655	Fireground Operations 667
You Are the Emergency Medical Responder 656	Special Events and Standby 668
Enrichment: Preparing for a Public Health Disaster–Pandemic Flu 657	Putting It All Together 669
Enrichment: Personal Preparedness 658	You Are the Emergency Medical Responder 670

Glossary 671
Sources 698
Index 702
YOU ARE THE EMERGENCY MEDICAL RESPONDER

An elderly man suddenly collapses while working in the office. He is lying on the floor and does not appear to be moving. You, as a member of the medical emergency response team (MERT), recognize the emergency, activate the emergency response plan and perform a primary assessment. The emergency medical services (EMS) system has been activated. You determine that the man is unconscious, not breathing and does not have a pulse. The office building has an automated external defibrillator (AED). How would you respond?
Key Terms

Acute coronary syndrome (ACS): Term that describes a range of clinical conditions, including unstable angina, that are due to insufficient blood supply to the heart muscle resulting from coronary heart disease (CHD).

Acute myocardial ischemia: An episode of chest pain due to reduced blood flow to the heart muscle.

Angina pectoris: Pain in the chest that comes and goes at different times; caused by a lack of oxygen reaching the heart; can be stable (occurring under exertion or stress) or unstable (occurring at rest, without reason).

Arrhythmia: Disturbance in the regular rhythmic beating of the heart.

Asystole: A condition where the heart has stopped generating electrical activity.

Atherosclerosis: A condition in which deposits of plaque, including cholesterol (a fatty substance made by the liver and found in foods containing animal or animal products) build up on the inner walls of the arteries, causing them to harden and narrow, reducing the amount of blood that can flow through; develops gradually and can go undetected for many years.

Atrial fibrillation: Irregular and fast electrical discharges of the heart that lead to an irregular heartbeat; the most common type of abnormal cardiac rhythm.

Atrioventricular (AV) node: A cluster of cells in the center of the heart, between the atria and ventricles; serves as a relay to slow down the signal received from the sinoatrial (SA) node before it passes through to the ventricles.

Automated external defibrillator (AED): A portable electronic device that analyzes the heart’s electrical rhythm and, if necessary, can deliver an electrical shock to a person in cardiac arrest.

Cardiac arrest: A condition in which the heart has stopped or beats too irregularly or weakly to pump blood effectively.

Cardiac chain of survival: A set of four critical steps in responding to a cardiac emergency: early recognition and access to the EMS system, early cardiopulmonary resuscitation (CPR), early defibrillation and early advanced medical care.

Cardiopulmonary resuscitation (CPR): A technique that combines chest compressions and ventilations to circulate blood containing oxygen to the brain and other vital organs for a person whose heart and breathing have stopped.

Cardiovascular disease: A disease affecting the heart and blood vessels.

Chest compressions: A technique used in CPR, in which external pressure is placed on the chest to increase the level of pressure in the chest cavity and cause the blood to circulate through the arteries.

Cholesterol: A fatty substance made by the liver and found in foods containing animal or animal products; diets high in cholesterol contribute to the risk of heart disease.

Commotio cordis: Sudden cardiac arrest from a blunt, non-penetrating blow to the chest, of which the basis is ventricular fibrillation (V-fib) triggered by chest wall impact immediately over the heart.

Congestive heart failure: A chronic condition in which the heart no longer pumps blood effectively throughout the body.

Coronary heart disease (CHD): A disease in which cholesterol and plaque build up on the inner walls of the arteries that supply blood to the heart; also called coronary artery disease (CAD).

Defibrillation: An electrical shock that disrupts the electrical activity of the heart long enough to allow the heart to spontaneously develop an effective rhythm on its own.

Electrocardiogram (ECG or EKG): A test that measures and records the electrical activity of the heart.

Heart: A fist-sized muscular organ that pumps blood throughout the body.

Hypertension: Another term for high blood pressure.

Implantable cardioverter-defibrillator (ICD): A miniature version of an AED, implanted under the skin, that acts to automatically recognize and help correct abnormal heart rhythms.

Myocardial infarction (MI): The death of cardiac muscle tissue due to a sudden deprivation of circulating blood; also called a heart attack.

Normal sinus rhythm (NSR): The normal, regular rhythm of the heart, set by the SA node in the right atrium of the heart.

Pacemaker: A device implanted under the skin, sometimes below the right collarbone, to help regulate heartbeat in someone with a weak heart, a heart that skips beats or one that beats too fast or too slow.

Risk factors: Conditions or behaviors that increase the chance that a person will develop a disease.
Silent heart attack: A heart attack during which the patient has either no symptoms or very mild symptoms that the person does not associate with heart attacks; mild symptoms include indigestion or sweating.

Sinoatrial (SA) node: A cluster of cells in the right atrium that generates the electrical impulses that set the pace of the heart’s natural rhythm.

Sudden cardiac arrest: A condition where the heart’s pumping action stops abruptly, usually due to abnormal heart rhythms called arrhythmias, most commonly V-fib; unless an effective heart rhythm is restored, death follows within a matter of minutes.

Transdermal medication patch: A patch on the skin that delivers medication; commonly contains nitroglycerin, nicotine or other medications; should be removed prior to defibrillation.

Ventricular fibrillation (V-fib): A life-threatening heart rhythm in which the heart is in a state of totally disorganized electrical activity.

Ventricular tachycardia (V-tach): A life-threatening heart rhythm in which there is very rapid contraction of the ventricles.

Silent heart attack: A heart attack during which the patient has either no symptoms or very mild symptoms that the person does not associate with heart attacks; mild symptoms include indigestion or sweating.

Sinoatrial (SA) node: A cluster of cells in the right atrium that generates the electrical impulses that set the pace of the heart’s natural rhythm.

Sudden cardiac arrest: A condition where the heart’s pumping action stops abruptly, usually due to abnormal heart rhythms called arrhythmias, most commonly V-fib; unless an effective heart rhythm is restored, death follows within a matter of minutes.

Transdermal medication patch: A patch on the skin that delivers medication; commonly contains nitroglycerin, nicotine or other medications; should be removed prior to defibrillation.

Ventricular fibrillation (V-fib): A life-threatening heart rhythm in which the heart is in a state of totally disorganized electrical activity.

Ventricular tachycardia (V-tach): A life-threatening heart rhythm in which there is very rapid contraction of the ventricles.

Learning Objectives
After reading this chapter, and completing the class activities, you will have the information needed to—

- Describe how to recognize and care for a victim who may be experiencing a heart attack.
- Describe how to care for a patient who may be experiencing cardiac arrest.
- List the reasons for the heart to stop beating.
- Describe the skill components of CPR.
- List the steps of one-rescuer CPR for an adult, a child and an infant.
- Explain when it is appropriate to stop performing CPR.
- Describe how to perform two-rescuer CPR for an adult, a child and an infant.
- Define defibrillation and describe how it works.
- Identify the abnormal heart rhythms commonly present during cardiac arrest.
- Describe the role and importance of early defibrillation in cardiac arrest.
- List the general steps for using an automated external defibrillator (AED).
- Identify precautions for using an AED.
- Identify special situations that may arise when using an AED.
- Identify controllable risk factors for cardiovascular disease (Enrichment).

Skill Objectives
After reading this chapter, and completing the class activities, you should be able to—

- Demonstrate one-rescuer CPR for an adult, a child and an infant.
- Demonstrate how to use an AED for adult and pediatric patients in cardiac arrest.

- Demonstrate two-rescuer CPR for an adult, a child and an infant.
INTRODUCTION

In this chapter, you will learn how to recognize and provide care for a patient who is experiencing signs and symptoms of a heart attack or whose heart stops beating. A heart attack occurs when blood vessels supplying the heart become blocked and fail to provide the heart enough blood and oxygen necessary to function properly. The condition in which the heart stops functioning is known as cardiopulmonary resuscitation (CPR) and use an automated external defibrillator (AED). CPR can keep a patient’s vital organs supplied with blood containing oxygen until more highly trained personnel arrive to provide advanced care. In many cases, however, CPR by itself cannot correct the underlying problem. An AED can analyze the heart’s electrical rhythm and deliver a shock to help the heart to restore an effective rhythm. Sudden cardiac arrest can happen to anyone at anytime, and although rare, can occur in children and infants.

As an emergency medical responder (EMR), you must assess patients quickly and be prepared to perform quality CPR and use an AED in cases of cardiac arrest. This chapter covers the basic principles of how to recognize cardiac emergencies and provide the appropriate care.

THE CIRCULATORY SYSTEM

Anatomy of the Circulatory System

The heart is a muscular organ, which functions like a pump. About the size of one’s fist, it lies between the lungs, in the middle of the chest, behind the lower half of the sternum (breastbone) (Fig. 13-1). The heart is protected by the ribs and sternum in front and by the spine in back. It has four chambers and is separated into right and left halves. The right side of the heart has two chambers known as the right atrium, which receives oxygen-depleted blood from the veins of the body, and the right ventricle, which pumps the oxygen-depleted blood to the lungs where waste products are removed and oxygen is absorbed.

The now oxygen-rich blood returns to the left side of the heart, where it enters the left atrium and goes on to the left ventricle, where it is pumped to all parts of the body. One-way valves direct the flow of blood as it moves through each of the heart’s four chambers. For the circulatory system to be effective, the respiratory system must also be working so that the blood can pick up oxygen in the lungs.

Physiology of the Circulatory System

The Heart’s Electrical System

An electrical system in the heart triggers the contraction or pumping action of the heart muscle. In a healthy heart, an electrical impulse comes from a point near the top of the heart called the...
cells throughout the body, and as blood flows through the veins, carbon dioxide and other wastes are taken away. This continuous process is called perfusion (Fig. 13-3).

The primary gases exchanged are oxygen and carbon dioxide. All cells require oxygen to function. Cells also require energy to function. Glucose, a simple sugar molecule, is the main source of energy inside the cell.

Pathophysiology of the Circulatory System

Cardiovascular disease is an abnormal condition that affects the heart and blood vessels. An estimated 80 million Americans suffer from some form of the disease. It remains the number-one killer in the United States, and a major cause of disability. The most common conditions caused by cardiovascular disease include coronary heart disease (CHD), also known as coronary artery disease (CAD), and stroke, also called a brain attack. (See Chapter 14 for more information on stroke.)

CHD occurs when the arteries that supply blood to the heart muscle become hardened and narrowed, a process called atherosclerosis. This damage occurs gradually, as cholesterol

CRITICAL FACTS

Cardiovascular disease affects approximately 80 million Americans and is the number-one killer in the United States. Common conditions caused by this disease include CHD and stroke.
and fatty deposits called plaque build up on the inner artery walls. As this buildup worsens, the arteries become narrower, reducing the amount of blood that can flow through them and preventing the heart from getting the blood or oxygen it needs (Fig. 13-4).

Patients who suffer from acute myocardial ischemia (reduced blood flow to the cardiac muscle) suffer chest pain, which usually results from CHD and is referred to as acute coronary syndrome (ACS). This reduced blood and oxygen supply to the heart can cause symptoms of angina pectoris or a heart attack.

A heart attack, or myocardial infarction (MI), occurs when coronary blood vessels become blocked by plaque buildup or a blood clot blocks one of the arteries supplying the heart. This may lead to an irregular heartbeat (arrhythmia) which then causes the pumping action of the heart to work less efficiently. A heart attack can also lead to a cardiac arrest where the heart ceases to function as a pump.

As the reduction of blood flow or blockage progresses, some people experience symptoms such as chest pain, pressure or discomfort, an early warning sign that the heart is not receiving enough oxygen-rich blood. Others may suffer a heart attack or even cardiac arrest without any warning signs or symptoms. If a blockage in a coronary artery of the heart is not treated quickly, the affected heart muscle tissue will die.

Pediatric Considerations

Cardiac Pathophysiology

Heart problems in children and infants are almost always secondary to airway and respiratory problems, but can also be related to congenital heart conditions. When cardiac arrest occurs in children and infants, it is often caused by:

- Airway and breathing problems.
- Traumatic injuries or an accident (e.g., motor-vehicle collision, drowning, electrocution or poisoning).

A heart attack is caused by blockages from plaque buildup or blood clots, which affect the ability of the heart to pump effectively. A heart attack can lead to cardiac arrest—where the heart ceases to function as a pump.
A hard blow to the chest (e.g., Commotio cordis).
Congenital heart disease.
Sudden infant death syndrome (SIDS).

Geriatric Considerations
Cardiac Pathophysiology
In geriatric patients, a general decrease in pain perception may cause a different reaction to a heart attack. Elderly patients often suffer what is known as a “silent heart attack,” meaning that there is an absence of chest pain. The symptoms of a heart attack most commonly shown by a geriatric patient include general weakness or fatigue, aching shoulders and abdominal pain or indigestion.

Other Specific Cardiovascular Emergencies
Angina Pectoris
A medical term for “pain in the chest,” angina pectoris develops when the heart needs more oxygen than it gets, because the arteries leading to it are too narrow. Angina pectoris is normally a transient condition. When a person with angina exercises, gets excited or is emotionally upset, the heart might not get enough oxygen. This lack of oxygen can cause chest discomfort or pain. People with angina usually have medicine they can take to stop the pain. Stopping physical activity or easing the distress and taking the medicine usually end the discomfort or pain.

Arrhythmias
Arrhythmias are disturbances in the regular rhythmic beating of the heart. Some people have heart arrhythmias that do not cause problems. In others, they can indicate a more serious problem that leads to heart disease, stroke or sudden cardiac death.

Atrial Fibrillation
Atrial fibrillation is the most common type of abnormal cardiac rhythm. When someone experiences atrial fibrillation, the two upper chambers of the heart (the atria) beat out of coordination with the two lower chambers (the ventricles). This causes an irregular and often rapid heart rate, thus leading to the inability to adequately deliver blood to the ventricles. Atrial fibrillation can be controlled with medication and treatment. Although not usually life threatening, atrial fibrillation is a risk factor for stroke and heart attack.

Congestive Heart Failure
Also called heart failure, congestive heart failure is a chronic condition in which the heart no longer pumps blood effectively throughout the body. This may cause high blood pressure and a buildup of fluid blood effectively throughout the body, resulting in difficulty breathing and weight gain. Fluid buildup and swelling usually occur in the face, hands, legs, ankles and feet.

Hypertension
Also known as high blood pressure, hypertension is one of the main risk factors for heart attack. A patient is considered to have hypertension when blood pressure is higher than 140/90 mmHg. The causes of hypertension are not clear; however, certain medications, salt intake and stress can contribute to a rise in blood pressure. Secondary hypertension is caused by an underlying condition such as a kidney abnormality or tumor of the adrenal gland.

Diabetes
Diabetes can affect the nerves; therefore, people with diabetes may not experience chest pain and may suffer a “silent heart attack.” People who experience silent heart attacks may have no warning signs or they may have very mild signs. When this occurs, the diagnosis of a heart attack may have to be confirmed by special tests. (See Chapter 14 for more information on diabetes.)

Women and Heart Attacks
Although women may experience chest pain or discomfort during a heart attack, they are more likely to experience some of the other warning signals, particularly shortness of breath; nausea or vomiting; stomach, back or jaw pain; or unexplained fatigue or malaise. When they do experience chest pain, women may have a greater tendency to have atypical chest pain: sudden, sharp but short-lived pain outside the breastbone. As a result, women often will delay telling others about their symptoms to avoid bothering or worrying them.
Assessment of Cardiac Emergencies

The sooner you recognize the signs and symptoms of a heart attack and act, the better chance you have to save a life. Many people will deny they are having a heart attack. Summon more advanced medical personnel if the patient shows some or all of the following signs and symptoms:

- **Discomfort, pressure or pain.** The major sign is persistent discomfort, pressure or pain in the chest that does not go away. Unfortunately, it is not always easy to distinguish heart attack pain from the pain of indigestion, muscle spasms or other conditions. This often causes people to delay getting medical care. Brief, stabbing pain or pain that gets worse when you bend or breathe deeply is not usually caused by a heart problem.

- **The pain associated with a heart attack can range from discomfort to an unbearable crushing sensation in the chest.** The patient may describe it as pressure, squeezing, tightness, aching or heaviness in the chest. Many heart attacks start slowly, as mild discomfort, pressure or pain often felt in the center of the chest (Fig. 13-5). It may spread to the shoulder, arm, neck, jaw, stomach or back. The discomfort or pain becomes constant. It is usually not relieved by resting, changing position or taking medicine. When interviewing the patient, ask open-ended questions, such as “Can you describe how you feel for me?” so you can hear the symptoms described in the patient’s own words.

- **Any chest discomfort or pain that is severe, lasts longer than a few minutes (about 3–5 minutes), goes away and comes back or persists even during rest requires medical care at once.** Even people who have had a previous heart attack may not recognize the signs and symptoms, because each heart attack can have entirely different signs and symptoms.

- **Pain that comes and goes, such as with angina pectoris.** Some people with CHD may have chest pain or pressure that comes and goes and is usually treated with a nitroglycerin pill or patches. This medication reduces the workload of the heart by dilating the coronary arteries.

- **Difficulty breathing is another sign of a heart attack.** The patient may be breathing faster than normal because the body tries to get much-needed oxygen to the heart. A patient who is sitting upright and leaning forward with hands on knees in the tripod position is struggling to breathe. Difficulty breathing also includes noisy breathing and shortness of breath.

- **Other signs and symptoms include pale or ashen skin, especially around the face.** The face also may be damp with sweat. Some people suffering from a heart attack sweat heavily, feel dizzy or lightheaded and/or may lose consciousness. Nausea is also a sign and symptom of a heart attack.

The key to saving a heart attack victim’s life is early recognition of signs and symptoms, including chest discomfort, pressure or pain that does not go away or comes and goes, and difficulty breathing.
Providing Care for Cardiac Emergencies

If you think someone is having a heart attack—
- Take immediate action and summon more advanced medical personnel.
- Have the patient stop any activity and rest (Fig. 13-6).
- Loosen any tight or uncomfortable clothing.
- Closely monitor the patient until more advanced medical personnel take over. Notice any changes in the patient’s appearance or behavior.
- Comfort the patient.
- If medically appropriate and local protocols or medical direction permit, give aspirin if the patient can swallow and has no known contraindications. Be sure the patient has not been told by his or her physician to not take aspirin.
- Assist the patient with prescribed medication and administer emergency oxygen, if it is available.
- Be prepared to perform CPR and use an AED.

Aspirin Can Lessen Heart Attack Damage

You may be able to help a conscious patient who is showing early signs of a heart attack by offering an appropriate dose of aspirin when the signs first begin. Local protocols regarding administration of medicines, such as aspirin, may vary for EMRs and should be followed. Aspirin should never take the place of more advanced medical care. If the patient is conscious and able to take medicine by mouth, ask if he or she—
- Is allergic to aspirin.
- Has a stomach ulcer or stomach disease.
- Is taking any blood thinners, such as warfarin (Coumadin®).
- Has been told by a physician to not take aspirin.

If the patient answers no to all of these questions, administration of two chewable (162 mg) baby aspirins, or one 5-grain (325 mg) adult aspirin tablet with a small amount of water should be considered.

Be sure that only aspirin is given and not acetaminophen (e.g., Tylenol®) or nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (e.g., Motrin® or Advil®) and naproxen (e.g., Aleve®). Likewise, coated aspirin products or products meant for multiple symptoms/uses such as cold, fever and headache, should not be used. Coated aspirin takes too long to dissolve to be effective.

CARDIAC ARREST

When the heart stops beating, or beats too ineffectively to circulate blood to the brain and other vital organs, this is called cardiac arrest. The beats or contractions of the heart become ineffective if they are weak, irregular or uncoordinated, because, at that point, the blood no longer flows through the arteries to the rest of the body.

When the heart stops beating properly, the body cannot survive. Breathing will stop soon after, and the body’s organs will no longer receive the oxygen they need to function. Without oxygen, brain damage can begin in about 4–6 minutes, and the damage can become irreversible after about 10 minutes.

A person in cardiac arrest is not breathing and has no pulse. The heart has either stopped beating or is beating weakly and irregularly so that a pulse cannot be detected.

Cardiovascular disease is the primary cause of cardiac arrest. About 900,000 people in the United States die each year from all forms of the disease. Other causes of cardiac arrest include drowning, choking, drugs, severe injury, brain damage and electrocution.

Cardiac arrest can happen suddenly, without any of the warning signs usually seen in a heart attack. This is known as sudden cardiac arrest or sudden cardiac death and accounts for more than 300,000 deaths annually in the United States. Sudden cardiac arrest is caused by abnormal,
chaotic electrical activity of the heart (known as arrhythmias). The most common life-threatening abnormal arrhythmia is ventricular fibrillation (V-fib).

Cardiac Chain of Survival
During the primary assessment, you learned to identify and care for life-threatening conditions. As an EMR, you must learn how to provide care for cardiac emergencies, such as heart attack and cardiac arrest. To effectively respond to cardiac emergencies, it helps to understand the importance of the Cardiac Chain of Survival (Fig. 13-7).

The four links in the Cardiac Chain of Survival are—

1. Early recognition of the emergency and early access to the emergency medical services (EMS) system. The sooner more advanced medical personnel or the local emergency number are called, the sooner EMS personnel will take over.

2. Early CPR. CPR helps supply blood containing oxygen to the brain and other vital organs to keep the patient alive until an AED is used or advanced medical care is provided.

3. Early defibrillation. An electrical shock called defibrillation may help the heart restore an effective rhythm.

4. Early advanced medical care. EMS personnel provide more advanced medical care and transport the patient to a hospital.

For each minute CPR and defibrillation are delayed, the patient’s chance for survival is reduced by about 10 percent.

In the Cardiac Chain of Survival, each link of the chain depends on and is connected to the other links. The layperson or bystander is the first link in the cardiac chain of survival. But for this four-step sequence to work and ensure the greatest chance of survival, it is very important to quickly recognize the emergency and call for help, start CPR promptly and continue until an AED is ready to use or more advanced medical personnel take over.

Laypersons should be informed through community outreach programs and public awareness campaigns that by taking quick action, including calling 9-1-1 or the local emergency number, starting CPR immediately and using an AED if one is available, it is more likely a person in cardiac arrest will survive.

CPR
A patient who is unconscious, not breathing and has no pulse is in cardiac arrest and needs CPR. CPR is a combination of chest compressions and ventilations which circulate blood containing oxygen to the brain and other vital organs for a person whose heart and breathing have stopped.

Summoning more advanced medical personnel immediately is critical for the patient’s survival. If an AED is available, use it in combination with CPR and according to your local protocols until more advanced medical personnel take over.

Artificial Ventilation
Artificial ventilation is a way of forcing air into the lungs of a patient who is not breathing. The oxygen in the air will be absorbed by blood flowing through the lungs and carried to tissues and the body’s vital organs.

There are several different methods of artificial ventilation, including—

- Mouth-to-mask ventilations.
- Resuscitation using a bag-valve-mask resuscitator (BVM).

The four links in the Cardiac Chain of Survival are early recognition and early access to the EMS system; early CPR; early defibrillation; and early advanced medical care.

A patient who is unconscious, not breathing and has no pulse is in cardiac arrest and needs CPR. CPR is a combination of chest compressions and ventilations which circulate blood containing oxygen to the brain and other vital organs for a person whose heart and breathing have stopped.
- Fixed- and variable-flow oxygen when used in conjunction with delivery devices.

Artificial ventilation can save a patient’s life, but over-ventilation can be potentially harmful, especially for a patient in cardiac arrest. For example, if the ventilation is given too forcefully, or at too fast a rate, the pressure in the patient’s chest will remain too high even between breaths. This stops the blood from returning to the right side of the heart, and means that less blood is available to be pumped to other vital organs and tissues as CPR continues.

Correct Hand Position

Keeping your hands in the correct position allows you to give the most effective compressions. The correct position for your hands is over the lower half of the sternum (breastbone) in the middle of the chest (Fig. 13-9). At the lowest point of the sternum is an arrow-shaped piece of hard tissue called the xiphoid process. Avoid pressing directly on the xiphoid process, which can break off and puncture underlying organs and tissues causing potentially serious injury.

To find the correct hand position, place the heel of one hand on the center of the chest, along the sternum, and then place the other hand on top. Use only the heel of your hand to apply pressure on the sternum when compressing the chest. Try to keep your fingers off the chest by interlacing...
them or holding them upward. Applying pressure with your fingers can cause inefficient chest compressions or unnecessary injury to the chest. Positioning the hands correctly allows for the most effective compressions and decreases the chance of causing injury.

If you have arthritis or a similar condition in your hands or wrists, you may use an alternative hand position. Find the correct hand position, as above, and then grasp the wrist of the hand on the chest with the other hand (Fig. 13-10).

The patient’s clothing will not necessarily interfere with your ability to position your hands correctly. If you can find the correct position without removing thin clothing, such as a T-shirt, do so. Sometimes a layer of thin clothing will help keep your hands from slipping, since the patient’s chest may be moist with sweat. However, if you are not sure you can find the correct hand position, bare the patient’s chest. Fat does not accumulate over the sternum; therefore, finding the correct hand position is the same regardless of patient size.

Position of the Rescuer

Your body position is important when giving chest compressions. Compressing the chest straight down provides the best blood flow. The correct body position is also less tiring for you.
When you press down in this position, you are pushing straight down onto the patient’s sternum. Keeping your arms as straight as possible prevents you from tiring quickly.

Compressing the chest requires less effort in this position. When you press down, the weight of your upper body creates the force needed to compress the chest. Push with the weight of your upper body, not with the muscles of your arms. Push straight down. Do not rock back and forth. Rocking results in less effective compressions and wastes energy. If your hands slip out of position, follow the steps listed earlier to quickly reposition them.

Recoil

After each compression, completely release the pressure on the chest. Do not break contact with the chest; simply allow the chest to fully return to its normal position (full recoil) before you start the next compression. It is during this phase of CPR that the chambers of the heart will refill with blood, ready to be circulated throughout the body with the next compression. Chest compressions are more effective when the patient is on a firm, flat surface. If the patient is on a softer surface such as a bed, couch or pressure relieving mattress, carefully position the patient face up on the floor or a backboard.

Compression Technique

Rate of Compression

Give compressions at a rate of at least 100 per minute. You can help yourself maintain the right pace by counting either aloud or in your head: one (as you press down) and (as you release the pressure) two (pressing down again) and (release again) and so on. When you get into the twenties, you can drop the “and” as it may be tiring and may alter the timing of compressions. Count the number of compressions, then give ventilations, before starting another cycle of compressions.

Depth of Compressions

Each time you push down, the breastbone of an adult should move at least 2 inches. The downward movement should be smooth, not jerky. Maintain a steady down-and-up rhythm and do not pause in between. If your hands slip out of position, follow the steps listed earlier to quickly reposition them.

Recoil

After each compression, completely release the pressure on the chest. Do not break contact with the chest; simply allow the chest to fully return to its normal position (full recoil) before you start the next compression. It is during this phase of CPR that the chambers of the heart will refill with blood, ready to be circulated throughout the body with the next compression. Chest compressions are more effective when the patient is on a firm, flat surface. If the patient is on a softer surface such as a bed, couch or pressure relieving mattress, carefully position the patient face up on the floor or a backboard.

Fig. 13-12, A–B: CPR is delivered in cycles of (A) chest compressions and (B) ventilations.
Consensus on Science with Treatment Recommendations (CoSTR) by international experts in the field of emergency medicine.

Interruptions

Minimize interruptions in giving chest compressions. If compressions must be interrupted, do so for no more than a few seconds. For example, you may need to move the patient to a location where CPR can be more effectively administered, such as if the patient is on a bed or couch, moving the patient to lie flat on the floor. CPR may also be interrupted briefly for defibrillation, insertion of an advanced airway or when two rescuers change positions between compressions and ventilations. Continue CPR while the patient

Table 13-1: Summary of Techniques for Adult, Child and Infant CPR

<table>
<thead>
<tr>
<th>Hand Position</th>
<th>ADULT</th>
<th>CHILD</th>
<th>INFANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two hands on the center of the chest</td>
<td>Two hands on the center of the chest</td>
<td>Two or three fingers on the center of the chest (just below the nipple line)</td>
<td></td>
</tr>
<tr>
<td>Compression Depth</td>
<td>At least 2 inches</td>
<td>About 2 inches</td>
<td>About 1½ inches</td>
</tr>
<tr>
<td>Ventilations or Breaths</td>
<td>Until chest clearly rises (about 1 second per ventilation)</td>
<td>Until chest clearly rises (about 1 second per ventilation)</td>
<td>Until chest clearly rises (about 1 second per ventilation)</td>
</tr>
<tr>
<td>Cycles (one rescuer)</td>
<td>30 compressions and 2 ventilations</td>
<td>30 compressions and 2 ventilations</td>
<td>30 compressions and 2 ventilations</td>
</tr>
<tr>
<td>Cycles (two rescuers)</td>
<td>15 compressions and 2 ventilations</td>
<td>15 compressions and 2 ventilations</td>
<td>15 compressions and 2 ventilations</td>
</tr>
<tr>
<td>Rate</td>
<td>At least 100 compressions per minute</td>
<td>At least 100 compressions per minute</td>
<td>At least 100 compressions per minute</td>
</tr>
</tbody>
</table>
Unit 4: Circulation

When you begin CPR, do not stop. If you must, do so for no more than a few seconds. Reasons to discontinue CPR include more advanced medical personnel taking over for you, seeing obvious signs of life, an AED being available and ready to use or being too exhausted to continue.

When to Stop CPR
- You see an obvious sign of life, such as breathing.
- An AED is ready to use.
- Another trained responder takes over.
- More advanced medical personnel take over.
- You are presented with a valid Do Not Resuscitate (DNR) order.
- You are too exhausted to continue.
- The scene becomes unsafe.

Pediatric Considerations
CPR
- The principles of CPR (compressing the chest and providing ventilations) are the same for children and infants as for adults, but the techniques are modified because children’s and infants’ bodies are smaller and weaker. Cardiac arrest in children and infants is usually caused by a respiratory emergency. If you recognize that a child or an infant is in respiratory distress or arrest, provide care immediately. If cardiac arrest occurs, begin CPR.

To perform CPR on a child or an infant, also perform cycles of chest compressions and ventilations at the rate of at least 100 compressions per minute. As with an adult, let the chest fully recoil to its normal position after each compression. For a child, use two hands on the center of the chest and compress about 2 inches. For an infant, use two or three fingers on the center of the chest, just below the nipple line, and compress about 1½ inches.

Two-Rescuer CPR
- When an additional rescuer is available, perform two-rescuer CPR. One rescuer gives ventilations and the other rescuer gives chest compressions. Rescuers should change positions (alternate turns performing compressions and ventilations) about every 2 minutes to reduce the possibility of rescuer fatigue. Changing positions should take less than 5 seconds.
- Perform two-rescuer CPR in the following situations:
 - Two rescuers arrive on the scene at the same time and begin CPR together.
 - One rescuer is performing CPR and a second rescuer becomes available.

When CPR is in progress by one rescuer and a second rescuer arrives, the second rescuer should confirm whether more advanced medical personnel have been summoned. If they have not, the second rescuer should do so before getting the AED or assisting with care. If more advanced medical personnel have been summoned, the second rescuer should get the AED, or if an AED is not available, the second rescuer should help perform two-rescuer CPR.

Hands-Only CPR
Hands-only CPR or continuous chest compressions, is a simplified form of CPR that eliminates ventilations or rescue breaths. It has its roots in dispatcher-assisted cardiac emergency situations where the caller is untrained, unwilling, unsure or otherwise unable to perform full CPR (chest compressions with ventilations or rescue breaths). Providing instruction on how to give chest compressions alone is less complex than trying to explain full CPR. The main focus of hands-only CPR is on the untrained layperson or a bystander who witnesses the sudden collapse of an adult. EMRs should be aware that if they come upon a bystander giving chest compressions only, that person is performing CPR correctly.

Chest compressions alone may provide effective circulation of blood containing oxygen in the first few minutes of an out-of-hospital cardiac arrest. The same quality compression techniques of full CPR apply to compression-
only CPR, including hand position, compression depth, speed, full recoil and minimal interruptions. Hands-only CPR does not affect the use of an AED.

AUTOMATED EXTERNAL DEFIBRILLATION

Each year, more than 300,000 Americans die suddenly of cardiac arrest. CPR can help by supplying blood containing oxygen to the brain and other vital organs. In many cases, however, an AED is needed to correct an abnormal electrical problem and allow the heart to restore an effective rhythm. Sudden cardiac arrest can happen to anyone at any time and, although rare, can occur in children and infants.

History of Defibrillation

The presence of cardiac arrhythmias or disturbances of the heart’s electrical system, and the ability to correct fibrillation with electrical shock, has been known since the mid-19th century.\(^1\) Electrical-shocking devices, or defibrillators, were first developed during the 1920s. A portable version was introduced onto mobile coronary units in Belfast, Northern Ireland in 1966.\(^2\) Defibrillation by emergency medical technicians (EMTs) without the presence of a physician was first performed in Portland, Oregon in 1969.

As technology improved over the years, newer generations of more compact, simple to operate, semi-automatic defibrillators known as AEDs evolved allowing EMTs and EMRs, as well as trained citizen responders, to provide this lifesaving technology. With these newer devices, a computer analyzes the heart’s rhythm and advises whether a shock is needed. Typically, the responder is guided through the steps of providing defibrillation by voice instructions and visual prompts from the AED. This includes placing the electrode (defibrillation) pads on the person’s chest, analyzing the heart’s rhythm, delivering a shock if needed and reminders to perform CPR when appropriate. Some AEDs can be configured to deliver lower energy levels considered appropriate for children and infants.

When EMRs and other responders are trained to use AEDs, they can significantly reduce the amount of time it takes to administer a first shock in a sudden cardiac arrest, researchers say. In Eugene and Springfield, Oregon, AEDs were placed on every fire truck, and all firefighters were trained to use them. Researchers saw these communities’ survival rates for cardiac arrest increase by 18 percent in the first year.\(^3\)

The vast majority of states recognize defibrillator training for EMTs, EMRs and other responders. All states and the District of Columbia have enacted AED Good Samaritan protection for lay responders.\(^4\) Today, AEDs are widely dispersed and can be found in areas where large groups of people gather, such as convention centers, airports, stadiums, shopping malls, large businesses, schools and industrial complexes.

The most common abnormal heart rhythm that causes sudden cardiac arrest occurs when the ventricles simply quiver, or fibrillate, without any organized rhythm. This condition is called ventricular fibrillation (V-fib). In V-fib, the electrical impulses fire at random, creating chaos and preventing the heart from pumping and circulating blood.

Another less common life-threatening heart rhythm, called ventricular tachycardia (V-tach), occurs when the heart beats too fast. In V-tach, an abnormal electrical impulse controls the heart, originating in the ventricles instead of in the SA node. This abnormal impulse fires so fast that the heart’s chambers do not have time to fill, and the heart is unable to pump blood effectively. With little or no blood circulating, there may be no pulse. As with V-fib, there is no breathing or pulse.

CRITICAL FACTS

V-fib is the most common cause of sudden cardiac arrest. In V-fib, heart ventricles quiver instead of beating properly, due to erratic electrical impulses.
AUTOMATED EXTERNAL DEFIBRILLATORS

AEDs are portable electronic devices that analyze the heart’s rhythm and can deliver an electrical shock, known as defibrillation, which helps the heart to re-establish an effective rhythm (Fig. 13-13). They can greatly increase the likelihood of survival if the shock is administered soon enough. For every minute lifesaving care, including CPR and defibrillation is delayed, it is estimated that survival declines by about 10 percent. There are different types of AEDs available but all are similar in operation and have some common features, such as electrode (AED or defibrillation) pads, voice prompts, visual displays and/or lighted buttons that help guide the responder through the steps of the AED operation.

AEDs monitor the heart’s electrical activity through two electrodes (i.e., AED pads) placed on the chest. The computer determines the need for a shock by looking at the pattern, size, and frequency of EKG waves. If the EKG waves resemble a shockable rhythm, such as V-fib or V-tach, the machine readies an electrical charge. When the electrical charge disrupts the irregular heartbeat, it is called defibrillation. This allows the heart’s natural electrical system to correct itself and begin to fire off electrical impulses that will cause the heart to beat effectively.

Delivering an electrical shock with an AED disrupts all electrical activity long enough to allow the heart to spontaneously develop an effective rhythm on its own. If V-fib or V-tach is not corrected, all electrical activity will eventually cease, a condition called asystole. Asystole cannot be corrected by defibrillation.

You cannot tell what, if any, rhythm the heart has by feeling for a pulse. CPR, started immediately and continued until defibrillation, helps maintain a low level of circulation in the body until defibrillation and increases the likelihood that the defibrillation shock will allow the heart to correct the abnormal rhythm.

Use an AED when the following conditions are present:
- The patient is unresponsive.
- There is no breathing.
- You do not detect a pulse.

Using an AED

When a cardiac arrest occurs, an AED should be used as soon as it is available and ready to use. If the AED advises that a shock is needed, follow protocols to give 1 shock followed by about 2 minutes of CPR. If CPR is in progress, chest compressions should not be interrupted until the AED is turned on, the defibrillation pads are applied and the AED is ready to analyze the heart rhythm.

Chest compressions can increase the likelihood that a defibrillation shock will be successful, especially if more than 4 minutes have elapsed since the patient’s collapse. Always follow local protocols and medical direction when using an AED and performing CPR. Be thoroughly familiar with the manufacturer’s operating instructions and maintenance guidelines for the device that you will be operating.

AEDs are portable electronic devices that analyze the heart’s rhythm and can deliver an electrical shock, known as defibrillation, which helps the heart to re-establish an effective rhythm.

When a cardiac arrest occurs, an AED should be used as soon as it is available and ready to use. If the AED advises that a shock is needed, follow protocols to give 1 shock followed by about 2 minutes of CPR.
The general steps of operating an AED include—

1. Turning on the AED and preparing it for use. Once the AED is turned on, it will guide the responder through all the steps of operation with voice and visual prompts. Some models have a power button that must be pressed, while others will activate upon opening the case or lid.

2. Exposing the patient’s chest and wiping the chest dry. The AED pads must be applied to the patient’s bare, dry chest. If the patient’s chest is moist or wet, it should be wiped with a small towel or gauze pads to ensure the best adhesion of the AED pads.

3. Attaching the AED pads to the patient’s bare, dry chest. Remove the AED pads from their sealed packaging. Peel the backing off from each pad, one at a time, to expose the adhesive, conductive surface of the pad before it is applied to the patient’s bare chest. Many AED pads have illustrations on them that show correct pad placement. Some AED pads are preconnected to the device, and some must be plugged into the device before rhythm analysis can begin. The pads should be appropriate to the patient. For example, pediatric AED pads must not be used on an adult patient because the lower energy levels may not be enough to defibrillate the patient.

4. Analyzing the heart rhythm. Some AEDs will automatically begin analysis when the pads are attached to the patient and connected to the device, while others have an “analyze” button that must be pushed. No one should touch or bump into the patient during the rhythm analysis as this could produce faulty readings.

5. Delivering a defibrillation shock. Once the analysis of the rhythm is complete, the AED will advise either to shock or not to shock the patient. If a shockable rhythm is detected, the AED will cycle up an electrical energy charge which will supply the shock to the patient. Some models can deliver the shock automatically while others have a “shock” button that must be manually pushed to deliver the shock. No one should be in contact with the patient when the shock is delivered, because they could also receive a shock and thereby reduce the effectiveness of the defibrillation shock by absorbing some of the electrical energy. After a shock is delivered, or if no shock is advised, a period of time is programmed to allow for CPR until the next rhythm analysis begins. If the AED prompts to troubleshoot a problem such as “check electrodes” or “check pads,” check to see that the AED pads are connected properly to the device and placed on the patient’s chest with good adhesion, according to the manufacturer’s instructions and local protocols. Spare batteries should be available in case of a “low battery” warning, but shocks can still be delivered with a low battery warning on some models.

After a shock is delivered, or if no shock is indicated, perform about 2 minutes of CPR before the AED begins rhythm analysis again. If at any time you notice an obvious sign of life, such as breathing, stop CPR and monitor the patient’s condition.

Pediatric Considerations

AED Use

While the incidence of cardiac arrest in children and infants is relatively low compared with that for adults, cardiac arrest resulting from V-fib does happen in young children. Most cardiac arrests in children and infants are not sudden and may be caused by—

- Airway and breathing problems.
- Traumatic injuries or accidents (e.g., motor-vehicle collision, drowning, electrocution or poisoning).
- A hard blow to the chest.
- Congenital heart disease.
- Sudden infant death syndrome (SIDS).

AEDs equipped with pediatric defibrillation pads are capable of delivering lower levels of energy considered appropriate for children and infants up to 8 years old or weighing less than 55 pounds. Use pediatric AED pads and/or equipment, if available. If pediatric-specific equipment is not available, an AED designed for adults can be used on children and infants. In any event, always follow local protocols and medical direction and the manufacturer’s instructions. For a child or an infant in cardiac arrest, follow the same general steps and precautions that you would when using an AED on an adult. If the pads risk touching each other because of the
smaller chest size, use the anterior/posterior method of pad placement (Fig. 13-14).

After a shock is delivered or if no shock is indicated, perform about 2 minutes of CPR before the AED begins analyzing the heart rhythm again. This pause is automatically programmed into the device and will be preceded by a voice prompt to resume CPR. If at any time you notice an obvious sign of life, such as breathing, stop CPR and monitor the patient’s condition.

Special AED Situations

Some situations require responders to pay special attention when using an AED. These include using AEDs around water, on patients with implantable devices, on patients with transdermal patches and on patients with jewelry or body piercings, as well as what to do when confronted with other AED protocols. Be familiar with these situations and know how to respond appropriately. Always use common sense when using an AED and follow manufacturer’s recommendations.

Pacemakers and Implantable Cardioverter-Defibrillators

Sometimes patients may have had a pacemaker implanted if they have a weak heart or a heart that skips beats or beats too slow or fast. These small implantable devices are sometimes located in the area below the right collarbone. There may be a small lump that can be felt under the skin.

Other patients may have an implantable cardioverter-defibrillator (ICD), a miniature version of an AED, which acts to automatically recognize and restore abnormal heart rhythms. Sometimes, a patient’s heart beats irregularly, even if the patient has a pacemaker or an ICD.

If the implanted device is visible, or you know that the patient has one, do not place the defibrillation pad directly over the device (Fig. 13-15). This may interfere with the delivery of the shock. Adjust pad placement if necessary and continue to follow established protocols. If you are not sure, use the AED as needed. It will not harm the patient or rescuer.

Rescuers should be aware that it is possible to receive a mild shock if an implantable ICD delivers a shock to the patient while CPR is performed. This risk of injury to rescuers is minimal and the amount of electrical energy involved is low. Much of the electrical energy is absorbed by the patient’s own body tissues. Some protocols may include temporarily deactivating the shock capability of an ICD with a donut magnet or other precautions. EMRs should be aware of and follow any special precautions associated with ICDs, but delays in delivering CPR and defibrillation shocks from an AED should not occur.

AEDs Around Water

If the patient is in freestanding water, remove the patient before defibrillation. A shock delivered in water could conduct to rescuers or bystanders. Once you have removed the patient from the water, be sure there are no puddles of water around you, the patient or the AED. Remove wet clothing for proper pad placement, if necessary. Dry the patient’s chest and attach the AED pads.

Fig. 13-15: Scars and/or a small lump may indicate that the patient has had some sort of device implanted. Courtesy of Ted Crites.
Wet garments should be removed, if possible. The patient should not be defibrillated in water. CPR or defibrillation should not be withheld to rewarm the patient. EMRs should handle hypothermia patients gently, as shaking them could result in V-fib.

Trauma

If a patient is in cardiac arrest resulting from traumatic injuries, an AED may still be used. Defibrillation should be administered according to local protocols.

Chest Hair

Some men have excessive chest hair that may cause difficulty with pad-to-skin contact. Since time to first shock is critical, and chest hair rarely interferes with pad adhesion, attach the pads and analyze the heart’s rhythm as soon as possible. Press firmly on the pads to attach them to the patient’s chest. If you get a “check pads” or similar message from the AED, remove the pads and replace with new ones. The pad adhesive may pull out some of the chest hair, which may solve the problem. If you continue to get the “check pads” message, remove the pads, shave the patient’s chest and attach new pads to the patient’s chest. Spare defibrillation pads and a safety razor should be included in the AED kit. Be careful not to cut the patient while shaving, as cuts and scrapes can interfere with rhythm analysis.

Jewelry and Body Piercings

Jewelry and body piercings do not need to be removed when using an AED. These are simply distractions that do no harm to the patient, but taking time to remove them delays delivery of the first shock. Do not delay the use of an AED to remove jewelry or body piercings. Do not place the defibrillation pad directly over metallic jewelry or body piercings. Adjust pad placement if necessary and continue to follow established protocols.

Other AED Protocols

Other AED protocols are not incorrect, nor harmful. For example, delivering three shocks and then performing CPR. However, improved methods, based on new scientific evidence, make it easier to coordinate performing CPR and using the AED. Follow the instructions of the AED you are using, whether...
it is to give one shock and then perform CPR or to give three shocks followed by CPR.

AED PRECAUTIONS

When operating an AED, follow these general precautions:
- Do not use alcohol to wipe the patient’s chest dry; alcohol is flammable.
- Do not use an AED and/or pads designed for adults on a child or an infant under age 8 or weighing less than 55 pounds, unless pediatric pads specific to the device are not available. Local protocols may differ on this and should be followed.
- Do not use pediatric AED pads on an adult, as they may not deliver enough energy for defibrillation.
- Do not touch the patient while the AED is analyzing. Touching or moving the patient may affect the analysis.
- Before shocking a patient with an AED, make sure that no one is touching or is in contact with the patient or the resuscitation equipment.
- Do not touch the patient while defibrillating. You or someone else could be shocked.
- Do not defibrillate someone when around flammable or combustible materials such as gasoline or free-flowing oxygen.
- Do not use an AED in a moving vehicle. Movement may affect the analysis.
- Do not use an AED on a patient who is in contact with water. Move the patient away from puddles of water or swimming pools, or out of the rain, before defibrillating.
- Do not use an AED on a patient wearing a nitroglycerin patch or other patch on the chest. With a gloved hand, remove any patches from the chest before attaching the device.
- Do not use a mobile phone or radio within 6 feet of the AED. Radio frequency interference (RFI) and electromagnetic interference (EMI), as well as infrared interference, generated by radio signals can disrupt analysis.

AED MAINTENANCE

For defibrillators to function optimally, they must be maintained like any other machine. AEDs require minimal maintenance. These devices have various self-testing features. However, it is important that operators be familiar with any visual or audible prompts the AED may have to warn of malfunction or a low battery. It is important that you read the operator’s manual thoroughly and check with the manufacturer to obtain all necessary information regarding maintenance.

In most instances, if the machine detects any malfunction, you should contact the manufacturer. The device may need to be returned to the manufacturer for service. While AEDs require minimal maintenance, it is important to remember the following:
- Follow the manufacturer’s specific recommendations for periodic equipment checks.
- Make sure that the batteries have enough energy for one complete rescue. (A fully charged backup battery should be readily available.)
- Make sure that the correct defibrillation pads are in the package and are properly sealed.
- Check any expiration dates on defibrillation pads and batteries and replace as necessary.
- After use, make sure that all accessories are replaced and that the machine is in proper working order before placing it back in service.
- If at any time the machine fails to work properly or warning indicators are recognized, discontinue use, place it out-of-service and contact the manufacturer immediately.

PUTTING IT ALL TOGETHER

When the heart stops beating, or beats too ineffectively to circulate blood to the brain and other vital organs, this is called cardiac arrest. Irreversible brain damage is likely to occur after about 10 minutes from lack of oxygen. By starting CPR immediately, and using an AED, you can help keep the patient’s brain and other vital organs...
supplied with oxygen and help the heart restore an effective, pumping rhythm. By summoning more advanced medical personnel, you can increase the cardiac arrest patient’s chances for survival.

A patient who is unconscious, not breathing and has no pulse is in cardiac arrest and needs immediate CPR. When performing CPR, always remember the following points regarding the quality and maximum effectiveness of CPR:

- Chest compressions should be given fast, smooth and deep.
- Let the chest fully recoil or return to its normal position after each compression before starting the downstroke of the next compression.
- Minimize any interruptions of chest compressions.

If two rescuers are available, begin two-rescuer CPR as soon as possible. Change positions about every 2 minutes and continue CPR. Once you start CPR, do not stop unnecessarily.

The heart’s electrical system controls the pumping action of the heart. Damage to the heart from disease or injury can disrupt the heart’s electrical system, resulting in an abnormal heart rhythm that can stop circulation. The two most common treatable abnormal rhythms initially present in patients suffering sudden cardiac arrest are V-fib and V-tach.

An AED is a portable electronic device that analyzes the heart’s rhythm and delivers an electrical shock to the heart, called defibrillation. Defibrillation disrupts the electrical activity of V-fib and V-tach long enough to allow the heart to develop an effective rhythm on its own. AEDs are used in conjunction with CPR.

Use an AED as soon as one becomes available. The sooner the shock is administered, the greater the likelihood of the patient’s survival. AEDs are appropriate for use on adults, children and infants in cardiac arrest. When using an AED, follow your local protocols and the manufacturer’s operating instructions and be aware of AED precautions and special situations.

YOU ARE THE EMERGENCY MEDICAL RESPONDER

The man who collapsed is unconscious, is not breathing and does not have a pulse. You send another MERT member to summon more advanced medical personnel and to bring the AED from inside the building. You begin CPR. Once the AED arrives, the other MERT prepares the AED for use. How would you respond? When can you stop performing CPR?
CPR—Adult and Child

NOTE: Ensure patient is on a firm, flat surface.

NOTE: Always follow standard precautions when providing care. Size-up the scene for safety and then perform a primary assessment. If the patient is not breathing and has no pulse—

STEP 1
Find the correct hand position to give chest compressions.
- Place the heel of one hand on the center of the chest.
- Place the other hand on top.
- Keep the arms as straight as possible and the shoulders directly over the hands.

STEP 2
Give 30 chest compressions.
- Push hard, push fast.
 - Compress the chest at least 2 inches for an adult and about 2 inches for a child.
 - Compress at a rate of at least 100 times per minute.
 - Let the chest rise completely before pushing down again.
NOTES:
- Keep your fingers off the chest when giving compressions.
- Use your body weight, not your arms, to compress the chest.
- Counting out loud helps keep an even pace.

STEP 3
Replace the resuscitation mask and give 2 ventilations.
- Each ventilation should last about 1 second.
- Give ventilations that make the chest clearly rise.
- The chest should fall before the next ventilation is given.

STEP 4
Perform cycles of 30 chest compressions and 2 ventilations.

Do not stop CPR except in one of these situations:
- You see an obvious sign of life, such as breathing.
- An AED is ready to use.
- Another trained responder takes over.
- More advanced medical personnel take over.
- You are presented with a valid DNR order.
- You are too exhausted to continue.
- The scene becomes unsafe.
SKILL sheet

CPR—Infant

NOTE: Place the infant on his or her back on a firm, flat surface, such as the floor or a table.

NOTE: Always follow standard precautions when providing care. Size-up the scene for safety and then perform a primary assessment. If the patient is not breathing and has no pulse—

STEP 1
Find the correct hand position to give chest compressions.
♦ Put two or three fingers on the center of the chest just below the nipple line.
♦ Keep one hand on the infant’s forehead to maintain an open airway.

STEP 2
Give 30 chest compressions.
♦ Push hard, push fast.
 • Compress the chest about 1½ inches for an infant.
 • Compress at a rate of at least 100 times per minute.
 • Let the chest rise completely before pushing down again.

STEP 3
Replace the resuscitation mask and give 2 ventilations.
♦ Each ventilation should last about 1 second.
♦ Provide ventilations that make the chest clearly rise.
♦ The chest should fall before the next ventilation is given.

STEP 4
Perform cycles of 30 chest compressions and 2 ventilations.

Do not stop CPR except in one of these situations:
♦ You see an obvious sign of life, such as breathing.
♦ An AED is ready to use.
♦ Another trained responder takes over.
♦ More advanced medical personnel take over.
♦ You are presented with a valid DNR order.
♦ You are too exhausted to continue.
♦ The scene becomes unsafe.
SKILLSheet

Two-Rescuer CPR—Adult and Child

NOTE: Ensure the patient is on a firm, flat surface.

NOTE: Always follow standard precautions when providing care. Size-up the scene for safety. Rescuer 1 then performs a primary assessment. If the patient is not breathing and has no pulse—

STEP 1
Rescuer 2 finds the correct hand position to give chest compressions.
- Place the heel of one hand on the center of the chest.
- Place the other hand on top.
- Keep the arms as straight as possible and the shoulders directly over the hands.

STEP 2
Rescuer 2 gives chest compressions.
- Give compressions when Rescuer 1 says “Patient has no pulse. Begin CPR.”
- Push hard, push fast.
 - Compress the chest at least 2 inches for an adult and about 2 inches for a child.
 - For an adult, give 30 chest compressions. For a child, give 15 chest compressions.
 - Compress at a rate of at least 100 times per minute.
 - Let the chest rise completely before pushing down again.

STEP 3
Rescuer 1 replaces the resuscitation mask and gives 2 ventilations.
- Each ventilation should last about 1 second.
- Give ventilations that make the chest clearly rise.
- The chest should fall before the next ventilation is given.

Continued on next page
Two-Rescuer CPR—Adult and Child continued

STEP 4
Give about 2 minutes of compressions and ventilations.
- **Adult:** cycles of 30 compressions and 2 ventilations
- **Child:** cycles of 15 compressions and 2 ventilations

STEP 5
Change positions.
- Rescuer 2 calls for a position change by using the word “change” at the end of the last compression cycle.
 - For an adult, by using the word “change” in place of the word “30” in the last compression cycle.
 - For a child, by using the word “change” in place of the word “15” in the last compression cycle.
- Rescuer 1 gives 2 ventilations.
- Rescuer 2 quickly moves to the patient’s head with his or her own mask.
- Rescuer 1 quickly moves into position at the patient’s chest and locates correct hand position on the chest.
- Changing positions should take less than 5 seconds.

STEP 6
Rescuer 1 gives chest compressions.
- Continue cycles of compressions and ventilations.

Do not stop CPR except in one of these situations:
- You see an obvious sign of life, such as breathing.
- An AED is ready to use.
- Another trained responder takes over.
- More advanced medical personnel take over.
- You are presented with a valid DNR order.
- You are too exhausted to continue.
- The scene becomes unsafe.

NOTES:
- Keep your fingers off the chest when performing compressions.
- Use your body weight, not your arms, to compress the chest.
- Position your shoulders over your hands with your elbows as straight as possible.
- Counting out loud helps keep an even pace.
SKILL sheet

Two-Rescuer CPR—Infant

NOTE: Place the infant on his or her back on a firm, flat surface, such as the floor or a table.

NOTE: Always follow standard precautions when providing care. Size-up the scene for safety and then perform a primary assessment. If the infant is not breathing and has no pulse—

STEP 1
Rescuer 2 finds the correct hand position to give compressions.

- Place thumbs next to each other on the center of the chest just below the nipple line.
- Place both hands underneath the infant’s back and support the infant’s back with your fingers.
- Ensure that your hands do not compress or squeeze the side of the ribs.
- If available, a towel or padding can be placed underneath the infant’s shoulders to help maintain the head in the neutral position.

STEP 2
Rescuer 2 gives 15 chest compressions.

- Give compressions when Rescuer 1 says “Patient has no pulse, begin CPR.”
- Push hard, push fast.
 - Compress the chest about 1½ inches for an infant.
 - Compress at a rate of at least 100 times per minute.
 - Let the chest rise completely before pushing down again.

STEP 3
Rescuer 1 replaces the mask and gives 2 ventilations.

- Each ventilation should last about 1 second.
- Give ventilations that make the chest clearly rise.
- The chest should fall before the next ventilation is given.

Continued on next page
Two-Rescuer CPR—Infant continued

STEP 4
Perform cycles of 15 chest compressions and 2 ventilations.

STEP 5
Change positions.
- Rescuer 2 calls for a position change by using the word “change” in place of the word “15” in the last compression cycle.
- Rescuer 1 gives 2 ventilations.
- Rescuer 2 moves to the infant’s head with his or her own mask.
- Rescuer 1 moves into position and locates correct finger placement on the infant’s chest.
- Changing positions should take less than 5 seconds.

STEP 6
Rescuer 1 gives chest compressions.
- Continue cycles of 15 compressions and 2 ventilations.

Do not stop CPR except in one of these situations:
- You see an obvious sign of life, such as breathing.
- An AED is ready to use.
- Another trained responder takes over.
- More advanced medical personnel take over.
- You are presented with a valid DNR order.
- You are too exhausted to continue.
- The scene becomes unsafe.

NOTE: Counting out loud or to yourself helps keep an even pace.
NOTE: Always follow standard precautions when providing care. Size-up the scene for safety and then perform a primary assessment. If the patient is not breathing and has no pulse—

STEP 1
Turn on the AED and follow the voice and/or visual prompts.

STEP 2
Wipe the patient’s bare chest dry.

NOTE: Remove any medication patches with a gloved hand.

STEP 3
Attach the AED pads to the patient’s bare chest.

• Place one pad on the patient’s upper right chest and other pad on the left side of the chest.

• **For a child or an infant:** Use pediatric AED pads if available.

NOTE: If the pads risk touching, use anterior/posterior pad placement. Place one pad in the middle of the child’s chest and the other pad on the child’s back, between the shoulder blades.
AED—Adult, Child and Infant continued

STEP 4
Plug in the connector, if necessary.

STEP 5
Make sure no one, including you, is touching the patient.
♦ Say, “EVERYONE, STAND CLEAR!”

STEP 6
Push the “analyze” button, if necessary.
♦ Let the AED analyze the heart rhythm.
STEP 7
Deliver a shock or perform CPR based on the AED recommendation.

◆ If a shock is advised—
 • Make sure no one, including you, is touching the patient.
 • Say, “EVERYONE, STAND CLEAR.”
 • Deliver the shock by pushing the “shock” button, if necessary.
 • After delivering the shock, perform about 2 minutes of CPR.
◆ If no shock is advised—
 • Perform about 2 minutes of CPR.

NOTE: If at any time you notice an obvious sign of life (e.g., breathing), stop CPR and monitor the patient's condition.
Recognizing a heart attack and getting the necessary care at once may prevent a patient from going into cardiac arrest. However, preventing a heart attack in the first place is even more effective—there is no substitute for prevention. Heart attacks are usually the result of disease of the heart and blood vessels. Coronary heart disease (CHD) is the leading cause of death for adults in the United States. It accounts for nearly 500,000 deaths each year.

CHD develops slowly. Deposits of cholesterol, a fatty substance made by the body and present in certain foods, build up on the inner walls of the arteries. As the arteries that carry blood to the heart get narrower, less oxygen-rich blood flows to the heart. This reduced oxygen supply to the heart can eventually cause a heart attack.

Although a heart attack may seem to strike suddenly, many people gradually put their hearts in danger from cardiovascular disease. Because cardiovascular disease develops slowly, people may not be aware of it for many years. Fortunately, it is possible to slow the progress of cardiovascular disease by making lifestyle changes.

Behavior that can harm the heart and blood vessels may begin in early childhood. Junk food, which is high in cholesterol and saturated fats but has little real nutritional value, can contribute to cardiovascular disease. Cigarette smoking also greatly contributes to cardiovascular disease and to other diseases.

There are many factors that increase a person’s chances of developing cardiovascular disease. These are called risk factors. Some of them you cannot change. For instance, although more women than men die each year from cardiovascular disease in the United States, heart disease generally affects men at younger ages than it does women.

Besides gender, ethnicity also plays an important role in determining the risk for heart disease. African Americans and Native Americans in the United States have higher rates of heart disease than do other populations. A history of heart disease in your family also increases your risk.

ALTERING RISK FACTORS

Many risk factors can be altered, however. Cigarette smoking; uncontrolled diabetes, high blood cholesterol or high blood pressure; obesity; and lack of regular exercise all increase the risk of heart disease. When you combine one risk factor, such as smoking, with others, such as high blood pressure and lack of regular exercise, the risk of heart attack is much greater.

It is never too late to take steps to control risk factors, thereby improving your chances for living a long and healthy life. It is important to know how to perform CPR and use an AED. However, since the chances of surviving cardiac arrest are poor, the best way to deal with cardiac arrest is to be aware of risk factors and take steps to help prevent it, including exercise and quitting smoking.